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Abstract— In this paper, a synthesis method of robust 

Fractional Order PID controller for speed motor of permanent 

magnet synchronous motor. Space Vector Pulse Width 

Modulation algorithm and quadrature-axis current loop 

transfer function based upon nominal plant model of the motor 

are combined with decoupling technology is established. 

Parameters of the (FOPID) are obtained which minimizes 

Integral  of  Time  weighted  Absolute  Error (ITAE) criterion 

(Standard  H∞ problem)  with  Fminimax  optimization  

algorithm is designed for space vector control model of 

permanent magnet synchronous motor to improve the speed of 

tracking performance. The performances obtained are 

compared with those given by an H∞ controller using in the 

frequency domain and in the time. 

Keywords — Fminimax Optimization Algorithm, Permanent 

Magnet Synchronous Motor (PMSM), Space Vector Pulse 

Width Modulation (SVPWM) algorithm,  Fractional Order 

PID (FOPID) controller. 

I. INTRODUCTION 

Permanent magnet synchronous motor (PMSM) has 

received widespread acceptance in industrial servo 

applications of accurate speed control, because of some of 

its outstanding features such as superpower density, high 

torque to current ratio, fast response and better accuracy [1 –

3] . In such applications, the motion controller of PMSM 

may need to respond relatively swiftly to command changes 

and to offer enough robustness against the uncertainties of 

the servo system. However, the control performance of 

PMSM drive is still affected by uncertainties, which may 

come internally, or externally, e.g., unpredictable plant 

parameter variations, external load disturbances, and 

unmodeled and nonlinear dynamics of the plant. Therefore, 

in order to enhance the performance of the PMSM drive 

system, control of the drive system has been a much 

researched topic that is still ongoing [4–7]. 

As  the  motor  running  in  the  actual  process,  there  will  

be some changes in inertia or load changes cases, which 

likely to affect the system control performance. The servo 

control itself requires  no  output  overshoot  and  quickly  

track  the  input command, which can hold the state steady 

and no static error at the  same  time.  Therefore,  the  motor  

system  needs  to  have  a  relatively  strong  robustness  and  

disturbance  rejection  for  parameter  changes. To solve this 

problem, many researchers have proposed different control 

schemes, there are fractional order control [8]; adaptive 

control [9; 10], robust control [11; 12], predictive control 

[13; 14] and intelligent control [15; 16] are continually 

incorporated to increase the robustness of the control 

algorithms. 

    The robust and adaptive design techniques can confront 

these uncertainties if process uncertainties are bounded and 

known prior to the controller design. However the design 

and analysis procedures are complex and difficult. Also, the 

process uncertainties are seldom known in advance and are 

not always bounded [15]. Intelligent control techniques can 

offer a model free design and administer the process 

parametric uncertainty and non-linearity but the 

implementation of these control schemes requires a large 

number of parameters to be determined prior to the training 

[17]. For H∞ control, the order of the controller is much 

higher than that of the plant; hence the high-order H∞ 

controller is not a welcome option for the most of the 

engineers. Chattering phenomenon and high heat loss in 

electrical power circuits are drawbacks for the sliding-mode 

control. For various PID tuning strategies, the stability of the 

controlled system should be adequately considered. In 

references [18–21], a supervisory controller was introduced 

to guarantee the stability of the closed-loop PID control 

system. Actually, a success among researchers is the 

fractional order PI D 
[22]. In fact, since the development 

of the first control approach using the fractional PID 

controller, different design approaches are proposed   [23-

25].  

    This article proposed FOPID space vector model 

controller of permanent magnet synchronous motor. In the 

design process of Robust H∞ mixed sensitivity controller, 

the weighting function parameter selection is generally 

based on the designer’s experience, using trial and error 

method [26]. In order to improve the quality control of 

PMSM system, nonlinear, strong coupling system of PMSM 

space vector robust controller was designed. The  key  idea  

behind the proposed  method  is  formulating the FOPID 

design problem for  PMSM  system as a optimization 

problem with objective function including Integral  of  Time  

weighted  Absolute Error (ITAE), allowing satisfying some 

performance specifications such as: a good set point 

tracking, a satisfactory load disturbance rejection. 

II. MATHEMATICAL MODEL OF PMSM CONTROL 

The mathematical model of permanent magnet 

synchronous motor voltage in the d-q rotating coordinate 

system [27]: 
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The flux equation can be expressed as: 
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The electromagnetic torque can be expressed as: 

 
3

2
  e d q q dT P i i                                   (3) 

The dynamic model of motor can be expressed as [27]: 

 
1

   M e M t

M

T B T
J

, 
1  MP              (4) 

Where 
dU  and  

qU  are q  and d axis voltages; 
di  and 

qi are 

q  and d  axis currents; R  is the resistance of the stator 

windings; 
d and q

 are q  and d  axis stator flux;   are the 

permanent magnet flux; 
dL  and 

qL  are q  and d  axis 

inductances; p  is differential operator; 
1  is electrical 

angular velocity; 
M  is mechanical angular velocity; P is 

number of pole pairs; 
eT  is electromagnetic torque. 

tT is the 

motor load torque; 
MJ is the combined inertia of rotor and 

load; B  is the damping coefficient. 0di  can be used to 

achieve current and speed control decoupling. 
qi  can be 

regarded as input and M
 can be regarded as output. 

According to Eqs. (1)-(4), we could obtain the current loop 

control block diagram of permanent magnet synchronous 

motor, that is shown in Fig.1 system transfer function is 

obtained. 

 
 

 

M

q

s
G s

I s
                                                                          (5) 

     3 2



        T

T p T i

p n p n i n K i n

K K s K K

JLs BL J R K K s B R K K K K J K K s K K B

 

 Where
3

2
 TK P ,    i

ACR p

K
K K

s
, nK R , K L  

 

 

     Permanent magnet synchronous motor vector control is 

based on the modular thinking, each control by of the 

control system is divided into separate sub-module. 

Including: the coordinate transformation module, the space 

vector transformation module and the feedback loop 

coordinate transformation modules. The simulation block 

diagram of the entire motor control system is shown in Fig. 

2. 

 
 

 

In this study, corresponding module parameters are as 

follows: 

 
TABLE 1 : PMSM SIMULATION PARAMETRES 

PMSM parametres Nominal  values  (p.u) 

Number of pole  pairs, P 4  
Amplitude of flux induced,   0.175Wb  

Resistance of stator windings, R               2.8750  

d  and q  axes inductances, 
dL  and 

qL  0.000835H  

Moment of inertia, 
MJ  20.008 /kg m  

Friction coefficient, B  0.001 . .N m s  

 

DC voltage source 400dcU V . In this model, speed loop 

used PI controller, parameters are as follows: current loop 

controller of quadrature-axis is 200 40 s  current loop 

controller of direct axis is 200 40 s . 

III. FRACTIONAL CALCULUS AND THE FRACTIONAL 

ORDER PID (FOPID) 

A. Fractional Calculus 

      Fractional calculus may be explained as the extension of 

the concept of a derivative operator from integer order  n  

to arbitrary order  v  where   v   may be a real value or a 

complex value or may be a complex valued function       

 ,v v x t  :                
n v

n v

d d

dx dx
  

   The most commonly referred definition of  fractional 

derivatives and fractional integrals was  given by G. F. B. 

Riemann and J. Liouville, according to which, the fractional 

integral of order  v 0  for a function  is given by : 
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with the condition that  f x  and  n

0 xD f x
  are causal 

functions. For initial conditions to be zero, the  Laplace 

transform of  D  is given by  v v

0 xL D s F s     i.e., for 

zero initial conditions, the system whose dynamic behavior 

described by differential equations having fractional 

derivatives re sults in transfer functions with fractional 

orders of  s  [28]. To simulate fractional order of  s  in 

MATLAB,  this is to be approximated by usual integer order 

transfer function having an infinite number of poles and 

zeroes. It is also possible to logicall y approximate it with a 

Fig.2 : The block diagram of  PMSM space vector control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. The quadrature -axis current loop model of PMSM 
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finite number of poles and zeros. Oustaloup proposed a 

method of approximation of a function of the form [29-30]:  

 H s s  , R                                                             (7) 

by a rational function:  
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and by applying the following synthesis formulas:   
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    Where, u  is geometrical mean of the unit gain  

frequency and the central frequency of a band of frequencies 

distributed around it. That is, 

u h b                                                                        (11) 

   Where, h  and b  are the high and low transitional 

frequencies [31]. 

B. Design of PI D   Controller   

  FOPID controller is an application of fractional calculus 

theory in PID controller, the differential equation of it in 

time domain is described by [32]: 

       * * *i iu t Kp e t Ki D e t Kd D e t           (12) 

The continuous transfer function of the fraction order PID 

controller is obtained through the Laplace transform is 

shown as follows [32]: 

 , *
Ki

K s x Kp Kd s
s




                                               (13) 

It is obvious that the FOPID controller nor only contains 

conventional proportional, integral and derivative gains 

 , ,Kp Ki Kd , but also owns additional integration and 

differentiation orders  ,  , which is adjustable 

parameters that gives more possibility to realize the desired 

control performance. While 1   and 1  , the FOPID 

controller structure is reduced to the classical PID controller. 

Yields also the following design parameter vector: 

 , , , ,x Kp Ki Kd      

IV. THE H∞ DESIGN OF CONTROLLERS  

A. Robust Control 

Robust mixed sensitivity control model of  G s  is 

shown in Fig.3, the sensitivity function S , the input 

sensitivity function R  and complementary sensitivity 

functions T  respectively are: 
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       (14) 

In the figure,  G s  the transfer functions of the nominal 

plant;  K s  is the output feedback controller; , ,u y r  

respectively, as a control signal, the observation signal, the 

external input. The choice of the weighting function should 

be compromise because there are limitations of  S T I  in 

the same frequency band. In addition, ,S T  and R  should 

satisfy robust control theorems. Internal system is stable and 

satisfies the desired performance so the controller design 

problem is transformed into the suppression problem of the 

H∞ norm  . 





   

S

zw R

T

W S

P T W R

W T
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B. Design Methodology of the Weighting Functions 

As aforementioned, the H∞ control design using the mixed-

sensitivity configuration requires three weighting functions, 

which reflect the various performance requirements of the 

system.  SW s ,  TW s  and  RW s  are the tracking 

performance and stability weighting functions, respectively. 

The very general guidelines for weighting functions choice 

(15-17) were proposed in [33-36] and were used in this 

paper, though were not strictly followed: 
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  RW s K                                                                      (17) 

Where SM and  TM  are high frequency gains, SA and 

TA are low frequency gains, 
*

B  and 
*

BT  determine 

Fig. 3. 
H   mixed sensitivity configuration. 
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crossover frequency. The desirable  SW s has low-pass 

characteristics that ensure the tracking performance and 

disturbance attenuation. The maximum singular value of the 

sensitivity transfer function  ,S s x  should be less than the 

maximum singular value of  1

SW s
 in all frequency 

domains: 

   , 1

SS j x W j                                 (18) 

 The weighting functions   TW s  restricts the 

robust boundary of the system. The maximum 

singular value of complementary sensitivity 

transfer function  ,T s x  should be less than the 

maximum singular value of   1

TW s
 in all 

frequency domains: 

         , 1

TT j x W j                                  (19) 

Moreover,   SW s  and  TW s  need to satisfy the 

following inequality constraint:  

   1 1

S TW j W j 1                                             (20) 

Taking these performance indicators of inequality 

constraints, the objective function can be obtained: 

 
0

6 ,
ft

t

t e t x dt    

Where:      , ,  refe t x t t x , 
min max x x x . 

V. SIMULATION RESULTS 

Under the MATLAB/Simulink environment, we use the 

established space vector control of PMSM system combines 

the design of robustness mixed sensitivity controller 

simulation. We use the established space vector control 

system of PMSM combining with the design of robust 

mixed sensitivity controller to simulate. The Fig.4 compares 

between the maximal singular values of the inverse 

weighting matrices  / S1 W s and sensitivity matrices 

 ,S s x  .The Fig.5 compares between the maximal singular 

values of the inverse weighting matrices  / T1 W s  and 

complementary sensitivity matrices  ,T s x . 
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Fig.4. Comparison between maximal singular values of        / S1 W s  

and  S s  
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Fig.5. Comparison between maximal singular values of   / T1 W s  and 

 T s  

To confirm these results in the time domain, the blocks of 

the Simulink Matlab® are used in order to loop-shape the 

perturbed system by a FOPID and robustified H∞ 

controllers. 

Fig.6. is the response curve of the system that a given initial 

speed of 400 r/min to 700 r/min in 0.005s.  
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                                  Fig.6. Speed  
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                           Fig.7. Three-phase current. 

The load torque at . sect 0 003  mutated to .tT 2N m  is 

shown in Fig.8.  
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                                        Fig.8. Torque. 

VI. CONCLUSION 

     This paper established a space vector control model of 

permanent magnet synchronous motor; the robust FOPID 

controller is designed according to the transfer function of 

quadrature-axis current loop.  In this work the Fminimax 

algorithm has been utilized to find the optimal parameters of 

FOPID controller which minimizing the (ITAE). The system 

with FOPID controller exhibit good frequency and time 

domain response as compared with the H∞ controller. The 

simulation results show that the control system has an 

excellent dynamic performance, it can be effectively 

suppressed the adverse effects by load disturbances. The 

designed controller ensures the robust performance of 

PMSM space-vector system. 
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